温馨提示: 豌豆仅提供国内节点,不提供境外节点,不能用于任何非法用途,不能访问境外网站及跨境联网。

免费领取1万IP!

Java代码 - 基于广度优先遍历实现迷宫路径搜索(搜索迷宫的最短路径信息)

发布时间:

上一篇文章演示了通过深度优先遍历搜索迷宫路径,无法得到最短的迷宫路径,那么通过广度优先遍历,层层向外扩张的方式,可以找到迷宫最优的路径信息,借助一个队列实现广度优先遍历层层向外扩张的思想,再借助一个数组打印节点的行走信息,代码运行如下:

请输入迷宫的行列数:5 5
请输入迷宫路径
0 0 1 1 1 
1 0 0 0 0
1 0 0 0 0
1 1 0 1 1
1 1 0 0 0
迷宫路径搜索结果如下:
* * 1 1 1 
1 * 0 0 0 
1 * * 0 0 
1 1 * 1 1 
1 1 * * * 

常量定义

/**
 * 描述: 把代码中所有出现的常量在这里统一定义
 * @Author administrator
 * @Date 5/18
 */
public interface Constant {
    // 右方向
    int RIGHT = 0;
    // 下方向
    int DOWN = 1;
    // 左方向
    int LEFT = 2;
    // 上方向
    int UP = 3;
}

迷宫节点类型定义

该迷宫采用栈实现非递归路径搜索,可以直接使用Java集合LinkedList,这里是自定义一个链式栈结构,代码如下:

/**
 * 描述:实现迷宫路径搜索需要的链式栈结构
 */
public class Stack<T> {
    // top指向头节点,头节点的后面就是栈顶节点
    private Entry<T> top;

    public Stack(){
        this.top = new Entry<>(null, null);
    }

    /**
     * 入栈操作
     * @param val
     */
    public void push(T val){
        Entry<T> node = new Entry<>(val, this.top.next);
        this.top.next = node;
    }

    /**
     * 出栈操作
     * @return
     */
    public T pop(){
        T val = null;
        if(this.top.next != null){
            val = this.top.next.data;
            this.top.next = this.top.next.next;
        }
        return val;
    }

    /**
     * 查看栈顶元素
     * @return
     */
    public T peek(){
        T val = null;
        if(this.top.next != null){
            val = this.top.next.data;
        }
        return val;
    }

    /**
     * 判断栈空
     * @return
     */
    public boolean isEmpty(){
        return this.top.next == null;
    }

    /**
     * 节点类型定义
     * @param <T>
     */
    static class Entry<T>{
        T data;
        Entry<T> next;

        public Entry(T data, Entry<T> next) {
            this.data = data;
            this.next = next;
        }
    }
}

迷宫类定义

这里主要包含了迷宫节点类MazeNode和迷宫类型Maze,代码如下:

/**
 * 描述: 迷宫的类型定义
 */
public class Maze {
    // 迷宫所有的路径存储在二维数组当中
    private MazeNode[][] maze;
    // 存储迷宫路径节点的队列结构,采用层层扩张的方式,寻找迷宫最优的路径信息
    private LinkQueue<MazeNode> queue;
    // 迷宫的行数
    private int row;
    // 迷宫的列数
    private int col;
    // 记录迷宫路径节点的行走信息
    private MazeNode[] pathrecord;

    /**
     * 迷宫初始化
     * @param row
     * @param col
     */
    public Maze(int row, int col) {
        this.row = row;
        this.col = col;
        this.maze = new MazeNode[row][col];
        this.queue = new LinkQueue<>();
        this.pathrecord = new MazeNode[row*col];
    }

    /**
     * 初始化指定位置的迷宫节点
     * @param data
     * @param i
     * @param j
     */
    public void initMazeNode(int data, int i, int j) {
        this.maze[i][j] = new MazeNode(data, i, j);
    }

    /**
     * 修改迷宫所有节点四个方向的行走状态信息
     */
    public void initMazeNodePathState() {
        for (int i = 0; i < row; i++) {
            for (int j = 0; j < col; j++) {

                if(j<col-1 && this.maze[i][j+1].val == 0){
                    this.maze[i][j].state[Constant.RIGHT] = true;
                }

                if(i<row-1 && this.maze[i+1][j].val == 0){
                    this.maze[i][j].state[Constant.DOWN] = true;
                }

                if(j>0 && this.maze[i][j-1].val == 0){
                    this.maze[i][j].state[Constant.LEFT] = true;
                }

                if(i>0 && this.maze[i-1][j].val == 0){
                    this.maze[i][j].state[Constant.UP] = true;
                }
            }
        }
    }

    /**
     * 寻找迷宫路径
     */
    public void findMazePath() {
        if(maze[0][0].val == 1){
            return;
        }

        queue.offer(maze[0][0]);
        while(!queue.isEmpty()){
            MazeNode top = queue.peek();
            int x = top.x;
            int y = top.y;
            if(x == row-1 && y == col-1){
                return;
            }

            // 往右方向走
            if(maze[x][y].state[Constant.RIGHT]){
                maze[x][y].state[Constant.RIGHT] = false;
                maze[x][y+1].state[Constant.LEFT] = false;
                queue.offer(maze[x][y+1]);
                pathrecord[x*col+y+1] = maze[x][y];
            }

            // 往下方向走
            if(maze[x][y].state[Constant.DOWN]){
                maze[x][y].state[Constant.DOWN] = false;
                maze[x+1][y].state[Constant.UP] = false;
                queue.offer(maze[x+1][y]);
                pathrecord[(x+1)*col+y] = maze[x][y];
            }

            // 往左方向走
            if(maze[x][y].state[Constant.LEFT]){
                maze[x][y].state[Constant.LEFT] = false;
                maze[x][y-1].state[Constant.RIGHT] = false;
                queue.offer(maze[x][y-1]);
                pathrecord[x*col+y-1] = maze[x][y];
            }

            // 往上方向走
            if(maze[x][y].state[Constant.UP]){
                maze[x][y].state[Constant.UP] = false;
                maze[x-1][y].state[Constant.DOWN] = false;
                queue.offer(maze[x-1][y]);
                pathrecord[(x-1)*col+y] = maze[x][y];
            }

            queue.poll();
        }
    }

    /**
     * 打印迷宫路径搜索的结果
     */
    public void showMazePath() {
        System.out.println("迷宫路径搜索结果如下:");
        if(pathrecord[row*col-1] == null){
            System.out.println("迷宫不存在有效路径");
        } else {
            int x = row-1;
            int y = col-1;
            for(;;){
                maze[x][y].val = '*';
                MazeNode node = pathrecord[x*col+y];
                if(node == null){
                    break;
                }
                x = node.x;
                y = node.y;
            }

            for (int i = 0; i < row; i++) {
                for (int j = 0; j < col; j++) {
                    if(maze[i][j].val == '*'){
                        System.out.print('*' + " ");
                    } else {
                        System.out.print(maze[i][j].val + " ");
                    }
                }
                System.out.println();
            }
        }
    }

    /**
     * 描述: 定义迷宫节点类型
     */
    private static class MazeNode {
        // 节点的值
        int val;
        // 节点的x和y坐标
        int x;
        int y;
        // 节点四个方向的行走状态,true表示可以走,false表示不能走
        boolean[] state;

        /**
         * 迷宫路径初始化
         * @param data
         * @param i
         * @param j
         */
        public MazeNode(int data, int i, int j){
            this.state = new boolean[4];
            this.val = data;
            this.x = i;
            this.y = j;
        }
    }
}

测试函数

public static void main(String[] args) {
    Scanner in = new Scanner(System.in);
    System.out.print("请输入迷宫的行列数:");
    int row, col, data;
    row = in.nextInt();
    col = in.nextInt();

    Maze maze = new Maze(row, col);

    System.out.println("请输入迷宫路径");
    for (int i = 0; i < row; i++) {
        for (int j = 0; j < col; j++) {
            data = in.nextInt();
            maze.initMazeNode(data, i, j);
        }
    }

    // 修改迷宫所有节点四个方向的行走状态信息
    maze.initMazeNodePathState();
    // 寻找迷宫路径
    maze.findMazePath();
    // 打印迷宫路径搜索的结果
    maze.showMazePath();
}

相关文章


oracle启动监听服务时报错问题(亲测有效) AJPFX辨析Java中运算符 ++ 和 += 的区别 DigiCert:2020年全球250亿台互联设备急需安全 YouTube视频营销怎么做? 解决Python模块报错:ModuleNotFoundError: No module name ' 透视相机(PerspectiveCamera) 时间序列预测(一)—— 数据预处理 xcodebuild自动打包,发布应用

上一篇:便宜的ssl数字证书,可靠的ssl证书,低价的ssl证书原因
下一篇:时间序列预测(五)—— Prophet模型

咨询·合作